

VACCINE: War of the Worms in Wired and Wireless Networks

Sapon Tanachaiwiwat, Ahmed Helmy

Department of Electrical Engineering
University of Southern California
{tanachai,helmy}@usc.edu

Introduction and Motivation

- Worm is significant threat to wired/wireless computer users
- Worm is self-replicated, usually combined with Trojan, Virus, Backdoor, etc.
- Worm spread FAST (even with random scan) usually outpaces human responses, we need something FASTER!!
- Worm can be terminated by other opposing worm type e.g. NetSky terminates Bagle (Email worms), CodeGreen terminates CodeRed (Network worms)
- Our work investigates this phenomena by building the model and simulating the scenarios.

Definitions

- Worm Interaction
 - Termination among multiple worm types
 - Indirect interaction
 - One-sided interaction
 - Two-sided interaction
- Scan Rate
 - Rate of worm issuing packet to target or possible susceptible hosts
- Effective Contact Rate
 - Rate of contact between worm and susceptible hosts causing susceptible hosts to be infected by worm (= scan rate / total hosts)
- Infection Rate
 - Rate of change of infected hosts per time unit
- Removed/Recovered Rate
 - Rate of infected hosts being vaccinated or crashed (by the worm) and will not be reinfected per time unit.
- Predator
 - Worm terminating other worm type
- Prey
 - Worm being terminated by other worm type

Epidemic Model

- Epidemic Model (SIR)
 - Mathematical model explaining the dynamic of contagious disease (the one we use is SIR or susceptible, infectious, recover model)

SIR State Transition Diagram

$$\frac{dS(t)}{dt} = -\beta I(t)S(t)$$

$$\frac{dI(t)}{dt} = \beta I(t)S(t) - \gamma I(t)$$

$$\frac{dR(t)}{dt} = \gamma I(t)$$

S = Susceptible hosts

I = Infected hosts

R = Recovered/Removed hosts

 β = Effective contact rate

 γ = Removal rate

Scan Rate Ratio

$$\Gamma_{BA} = \frac{SR_B}{SR_A}$$

- SR_R scan rates of worm type B
- SR_A scan rates of worm type A

Initial Host Ratio

$$\Lambda_{BA} = \frac{I_{B(0)}}{I_{A(0)}}$$
 • $I_{B(0)}$ initial hosts of worm type B

- $I_{A(0)}$ initial hosts of worm type A

We use these parameters to predict pandemic of prey and predator INFOCOM Poster and Demo Session 2006

Indirect Interaction

- No predator/prey
- Two worm types simply coex and compete for available resources (network, CPU)
- Simply adding worm type to epidemic model (SIR model)

One-sided Interaction

- There is one predator and one prey
- One-sided interaction can be patched or un-patched
- Patching (or false signature) by predator prevents re-infection from prey
- Example is CodeGreen&CodeRed (they both use the same exploit and code green patchs the hosts after it infect the host)

Prev

Two-sided Interaction

- There is two predators which can terminate each other
- Two-sided interaction can also be patched or un-patched
- Example is NetSky terminates Bagle and vice versa (with different sub type)
- Equilabrium with equal scan rate (both types have equal infectives)

$$A = Predator$$

 $B = Prey$

VACCINE Framework

- Using good worms to terminate bad worms
- Need to know the bad worms scan rate (as well as bad worm strategy)
- Delay after bad worms launching has significant impact on effectiveness
- Can be reactive (increase scan rate after detect bad worms) or active (always using highest scan rate possible or increase scan rate without bad worm detection)

VACCINE Procedure

STEP 1: Infect susceptible hosts with same strategy as of targeted worms

STEP 2: After successfully infecting the host, check whether targeted worm has already infected the host.

STEP 3: If infected, adjust initial scan rate (based on releasing delay of non-malicious worm and scan rate of malicious worm). Otherwise, continue scan with same scan rate.

STEP 4: Remove targeted worms. If patch is available go to step 5. Otherwise go to step 6.

STEP 5: Apply patch (or false signature of malicious worm).

STEP 6: Wait for K period of time, if there is no additional incoming malicious worms, remove self from host.

Static scan rate

VACCINE Challenges

- Distinguishing between good and bad worm is not easy.
- Worm scan rate can be varied based on available network bandwidth or size of email address available (How to make sure that there are available resources for counter worms)
- Need accurate estimation of worm releasing time to minimize the maximum required speed for good worms.
- Good worm can cause undesirable denial of service if heavily scan innocent hosts

SUMMARY/FUTURE WORK

- We identify three types of interactions: indirect interaction, one-sided interaction, and two-sided interaction that show significantly different patterns of propagation.
- We develop a new worm propagation model which is validated through extensive simulations.
- We shall further develop the VACCINE architecture, protocol and evaluate it in a test bed. Worm interactions in different mobility models will be explored.
- More details of worm interaction models and simulation results can be found in "S. Tanachaiwiwat, A. Helmy, "VACCINE: War of the Worms in Wired and Wireless Networks", Technical Report CS 05-859, Computer Science Department, USC"